autocorrelated perturbances - определение. Что такое autocorrelated perturbances
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое autocorrelated perturbances - определение

CORRELATION OF A SIGNAL WITH A TIME-SHIFTED COPY OF ITSELF, AS A FUNCTION OF SHIFT
Serial covariance; Autocorrelation function; Auto-correlation; Autocorrelated; Auto correlation; Auto Correlation; Autocorrelation matrix; Serial dependence; AutoCorrelation; Serial correlation; Self-correlation; Auto-correlation of stochastic processes; Applications of autocorrelation; List of applications of autocorrelation
  • Above: A plot of a series of 100 random numbers concealing a [[sine]] function. Below: The sine function revealed in a [[correlogram]] produced by autocorrelation.
  • f}} is the reason <math>g*f</math> and <math>f \star g</math> are identical in this example.
<!--Note that g∗f and f∗g would be identical even without the symmetry of f, so please don't change the statement above.-->

Autocorrelation         
Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them.
autocorrelation         
¦ noun Mathematics & Statistics correlation between the elements of a series and others from the same series separated from them by a given interval.

Википедия

Autocorrelation

Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with autocovariance.

Unit root processes, trend-stationary processes, autoregressive processes, and moving average processes are specific forms of processes with autocorrelation.